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ABSTRACT

Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the

USML-1 Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was

placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by

a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO 2 laser beam to

induce thermocapillary flow. The flow field was studied by flow visualization. Severn thermistor probes

were placed in the fluid to measure the temperature distribution. The temperature distribution along the

liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating

powers, laser beam diameters, and free surface shapes, in conjunction with the experiments an

extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and

temperature measurements with fiat and curved free surfaces are presented and they are shown to

agree well with the numerical predictions.

INTRODUCTION

Surface tension variations along a liquid free surface caused by non-uniform temperature

distributions induce so-called thermocapillary flows in the bulk liquid. In a terrestrial environment such

flows are usually overshadowed by buoyancy-driven flows, except in configurations of small dimension

(less than several ram). In the reduced gravity environment of space, however, buoyancy is greatly

reduced and thermocapillarity becomes an important driving force for fluid motion (Ostrach, 1982). In

such applications as crystal growth from melts, two-phase flows with heat transfer, and thermocapillary

migration of bubbles and droplets, thermocapillary flow is known to play an important role. For that

reason much attention has been given in recent years to thermocapillary flow analysis. Much of past

work was done numerically. Since thermocapillary flow experiments in one-g must be conducted in very

small systems to minimize buoyancy effects, they can cover only limited ranges of parameters.

Joint "L+1" Science Review for USML-1 and USMP-I with the Microgravity Measurement Group, September

22-24, 1993, Huntsville, Alabama, USA. 271



Therefore, it is necessary to perform experiments in microgravity over a wide range of conditions to

investigate and descdbe thermocapillary flows fully and to validate numerical analyses.

It is also known that thermocapillary flows become oscillatory under certain conditions but its

cause is not yet completely understood. The least understood part is the role free surface deformability

plays in the oscillation mechanism. Based on our past ground-based experimental work we suggested a

physical model which emphasized the importance of deformable free surface and proposed a surface

deformation parameter to represent its role in the oscillation mechanism (Kamotani et al., 1984). On the

other hand, some investigators consider the oscillation phenomenon to be the result of instability that

could occur even with an undeformable free surface (reviewed in Davis, 1987). According to the latter

concept, only one dimensionless parameter, called Marangoni number (Ma), specifies the critical

condition for the onset of oscillations. Therefore, we sought to obtain further evidence to determine the

importance of free-surface deformation by conducting experiments in space over a wide range of

conditions.

For those reasons we conceived a series of experiments to study thermocapillary flows in

microgravity. The first experiment, called the Surface Tension Driven Convection Experiment (STDCE),

was conducted on the first U.S. Microgravity Laboratory Mission (USML-1) on the Space Shuttle

Columbia (STS-50) which was launched on June 25, 1992. The main objectives of the STDCE were to

study the velocity and temperature fields in detail in non-oscillatory thermocapillary flows and to

determine if Ma alone can specify the onset of oscillations. In a second sedes of experiments

(STDCE-2), which is scheduled to be conducted aboard USML-2 in 1995, we will focus on the oscillation

phenomenon including the measurement of free surface deformation.

In order to complement the space experiments, as well as to help design them, an extensive

numerical analysis of thermocapillary flow was conducted for both fiat and curved free surfaces and

under steady and transient (non-oscillatory) conditions. In this paper some results of the velocity and

temperature measurements with fiat free surfaces are presented and compared with the numerical

results. It was also found that despite the fact that Ma in the STDCE was as large as 5 times that of the

critical Ma determined in one-g tests, no oscillations occurred.

I. DESCRIPTION OF STDCE

The specific objectives of the STDCE were to determine the extent and nature of thermocapillary

flows, the effect of heating mode and level, the effect of the liquid free-surface shape, and the onset

conditions for oscillatory flows. The detailed requirements of the expedment are given by Ostrach and

Kamotani (1987). Its design and important considerations behind it are discussed by Kamotani and

Ostrach (1987). The development of the STDCE flight hardware is described by Pline et al. (1990).
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A. Experimental System

The basic experimental configurations are illustrated in Figs. 1 and 2. 10 cSt silicone oil was

used as the test fluid in a circular container, 10 cm in diameter and 5 cm in depth. The container side

was made of 5 mm thick copper with copper tubing coiled around the outside of the side wall for cooling

water circulation. The top rim of the side wall had a sharp edge to pin the fluid. The bottom wall was

made of plexiglass of uneven thickness (average thickness 8 mm) because of a filling hole and the

attachment of lens assembly for flow visualization through the bottom wall. In order to minimize the

contamination of the test fluid the container inner surface was kept clean and dry until the experiment

and the fluid and the air above it were both contained within the fluid loop. Two heating modes were

employed: CO 2 laser heating (called the Constant Flux Experiment (CF)) and heating by a cylindrical

heater placed along the container centedine (called the Constant Temperature Experiment (C'I')). The

diameter of the submerged heater was set at 1.11 cm but the laser beam diameter was variable. The

laser power was adjustable from 0.2 to 3 watts and the submerged heater power from 1 to 20 watts. The

mean absorption length of CO 2 laser (10.6 IJm wavelength) by the test fluid was measured to be 0.060

mm (Pline et al., 1990), so the laser beam was absorbed within a relatively very short distance from the

free surface. The emissivity of the fluid surface was determined to be 0.9 (Pline et al., 1990). The free

surface shape was varied by adjusting the total volume of fluid in the container. Fig. 2 shows flat and

curved surfaces for the baseline tests but in the actual experiment additional tests with other curved

surfaces, including a convex shape in the CF configuration, were conducted. Fig. 3 shows those surface

shapes. Each shape was set within 1 mm of the prescribed location. The temperature field in the bulk

fluid was studied by thermistors. Nine probes were used to measure temperature at various locations In

the fluid and in the container walls. Their positions are shown in Fig. 4. The top of the thermistor No. 1

touched the free surface. In addition, one probe measured the ambient temperature above the fluid free

surface and thermistors monitored the submerged heater shell temperature. The three probes along the

container centedine were removed during the CT tests. The diameter of the thermistors in the fluid was

0.5 mm. The temperature data were taken once every 100 milliseconds during tests, digitized, and

stored. They were downlinked during certain times to the ground station where we monitored the

experiment. The resolution of the digital data was 0.1 °C and the accuracy of thermistor sensors was 0.1

°C.

To obtain information on the temperature distribution along the free surface, which is important

because it is directly related to the driving thermocapillary force, a thermographic technique was

employed. The infrared imaging system used in the STDCE is described by Pline and Butcher (1990).

The operating wavelength was 8-14 pm and the mean absorption length of the fluid in that range was
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measured to be 0.012 mm. As will be discussed later, the thermal boundary layer thickness along the

free surface can become comparable to the above absorption length in certain relatively small areas but

along most of the free surface the boundary layer is much thicker than the absorption length, so the

infrared data represents the surface temperature well. The minimum detectable temperature difference

was 0.1°C and the spatial resolution was 1 mm. Its feasibility and accuracy were checked in the

ground-based experiment (Pline, 1988). This technique was also found to be very useful in studying the

oscillation phenomenon (Kamotani et al., 1992).

The flow field was studied by flow visualization. Fifty micron alumina particles were used as

tracers. They were illuminated by a 1 mm thick laser light sheet to study the flow in one cress-sectional

plane of the container. Since the container side wall was made of copper to obtain a uniform wall

temperature, a CCD camera was attached to the transparent bottom wall (see Fig. 1) for recording.

Because of the bottom viewing the video image of the illuminated cress-section was distorted (keystone

effect). The video record of the flow is being analyzed using a particle image velocimetry (PIV)

technique. The technique Is explained by Wemet and Pline (1991). The keystone effect is corrected in

the analysis.

The hardware for the STDCE is discussed in more detail by Pline, et al. (1993).

B. Parametric Ranges

The important dimensionless parameters for the present experiment in the case of fiat free

surface are: Ma (Marangoni number) =O-TATH/p_, Pr (Prandtl number) =v/_, Ar (aspect ratio) = H/R, Hr

(relative heater size) = D H/D, where o-T is the temperature coefficient of surface tension, AT the net

temperature variation along free surface, H the fluid depth, D the container diameter, R the radius, DH

the heating zone diameter, v the kinematic viscosity of the fluid, p the dynamic viscosity, and <_the

thermal diffusivity. In the CT configuration AT is the temperature difference between the heater and the

side wall. Since total heat input is specified in the CF tests, the AT is not known a pdod. However,

because the thermocapillary flow driving force is closely related to AT and to make comparisons between

the CT and CF tests convenient, a Ma based on AT is used in both cases in the present paper, AT being

determined from the numerical analysis for the CF tests.

in one-g heat loss occurs at the free surface mainly through natural convection in the

surrounding air but in microgravity radiation loss to the enclosure wall becomes important. Since the

temperature difference between the free surface and the surroundings is relatively small compared to

their absolute temperatures, the radiation loss can be represented by Ra(radiation parameter) = EG

Ta3H/k, where E is the emissivity of the fluid free surface, <_the Stefan-Bolzmann constant, Ta the

temperature of the surroundings, and k the thermal conductivity of the fluid.
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The range of each parameter covered in the STDCE was as follows: 3.6x104 _; Ma < 3.1x105 ,

78 < Pr < 97, Ar = 1.0, Hr = 0.11 for CT and 0.05, 0.1, and 0.3 for CF, and Ra = 0.5. The physical

properties are evaluated at the mean fluid temperature in the container. The range of Pr reflects the fact

that the fluid viscosity varies with temperature. In our ground-based tests in the CT configuration using a

small container (4 mm dia.), the critical Ma for the onset of oscillations was found to be 6.5 x 104

(Kamotani et al., 1992), so the maximum value of Ma in the STDCE was about 5 times of that. As

discussed in the Introduction, we found that the deformability of the free surface is important in the

oscillation mechanism and proposed the surface deformation parameter S, which is defined as S = oTA

T/<_(I/Pr), to represent it, when Pr is larger than unity (Kamotani et al., 1984). The critical value of S

determined in our one-g tests was 9 x 10-3 for Ar = 1 (Kamotani et al., 1992) but in the STDCE the

maximum value of S was 2.5 x 10"3, so based on our concept the flow in the STDCE should not

oscillate.

II. NUMERICAL ANALYSIS

The program for fiat free surface is based on the SIMPLER algorithm by Patankar (1980). The

flow is assumed to be laminar, incompressible, and axisymmetric. The fluid properties are considered to

be constant except for viscosity which varies with temperature. The program analyzes both transient and

steady states. It turns out that all the temperature data taken in the STDCE were in transient state

although we had planned to obtain some steady state data.

In the CT configuration the measured temperatures of heater and side wall are used as inputs.

Both temperatures changed with time during the tests. In the CF case the measured values of laser

power and side wall temperature, and the beam diameter are the inputs. The emissivity and the

absorption length are also taken into account. The coordinate system used in the analysis is defined in

Fig. 4. The velocity components (u, v) and stream function _Vare made dimensionless by oTAT/p and

CTZ_TRH/p, respectively. The temperature T is non-dimensionalized as 8 = (r - Tc )/AT, where Tc is the

side wall temperature.

A non-uniform grid system is adopted with meshes graded toward the hot and cold walls and

toward the free surface. In the CT cases due to the presence of a thin thermal boundary layer along the

heater surface the free surface temperature varies very sharply near the heater. As a result the free

surface velocity increases very sharply in that region and an accurate resolution of the surface velocity

distribution near the heater is the most important requirement for the numerical grid. In Fig. 5a the

surface velocity distributions computed with three different grids are shown. The computed case

corresponds to the main CT test and is discussed in detail below. The 46 x 41 (radial x vertical) grid with

the smallest radial mesh size of 0.001 next to the heater is not adequate. The 58 x 51 and 67 x 60 grids

275



with the smallest mesh sizes of 0.0005 and 0.0003, respectively give nearly the same distribution. With

all three grids the maximum stream function and the total heat transfer rate are all within 1% of each

other. Therefore the 58 x 51 grid is used both for the steady and transient CT computations. In the CF

configuration there exists a very thin thermal boundary layer along the free surface in the region heated

by the laser beam, so an accurate prediction of the surface temperature distribution near the heated

region becomes important. In Fig. 5b the surface temperature distributions computed with three different

grids, 37 x 40, 46 x 51, and 58 x 60 with the smallest axial mesh sizes next to the free surface of 0.005,

0.001, and 0.0005, respectively are shown for the main CF test. Based on Fig. 5b the 46 x 51 grid is

used for the CF transient and steady analysis.

The program for curved free surfaces is explained in Kamotani and Platt (1992). The

computational domain with curved free surfaces is transformed into a rectangular domain by a

coordinate transformation and the velocity and temperature fields are solved by a finite-difference

scheme.

III. RESULTS AND DISCUSSION

In the STDCE a total of 20 CF and 18 CT tests were conducted with fiat and curved free

surfaces but many of them were run only for 10 minutes to study if the flow became oscillatory. It had

been estimated that it takes about one hour after the flow is started to obtain hydrodynamic as well as

thermal equilibrium. Considering that relatively long transient period we had decided to conduct only one

CF and one CT 1-hour test with fiat free surfaces to study the complete transient flow and thermal

development. Those two tests are discussed first.

A. CTOne-hourTest

Before the test we made sure that the free surface was flat and no appreciable motion existed in

the fluid through video downlink. Fig. 6 shows how the heater and side wall temperature varied during

the one-hour period after the heating started. The power to the heater was boosted for the first 90

seconds to shorten the warm-up time of the heater. Judging from the heater temperature overshoot in

Fig. 6 the power boost was slightly too large. After the boost period the heater power was fixed but the

heater temperature increased gradually throughout the one-hour period. The side wall temperature

variation was relatively small, about 0.6 °C increase after one hour. The readings of the two thermistors

in the side wall were the same within the resolution of the data acquisition system (0.1 °C). As for the 6

thermistors in the heater shell 4 of them, which are positioned in the top 2/3 of the heater length, read

within 0.2 °C of each other (the data in Fig. 6 is the average of those) but 2 thermistors near the heater

bottom read about 0.5 °C below the above average probably due to the end loss. The solid lines in Fig.
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6 are the inputs to the numerical analysis.

Fig. 7 shows the computed streamlines and isotherms at t(time) = 2 min. The streamline pattern

shows that the whole fluid is already in motion at this time. The observed streamline pattern at the same

time is shown in Fig. 8, which was obtained by superposing several video frames of the flow. The

observed pattern agrees well with the computed one in Fig. 7 in terms of the overall flow structure

(unicellular motion) and the location of the cell center. The overall flow pattern changes little beyond this

time. In comparison, in one-g the flow in this large system is confined to a thin region near the surface

because of stratification. The isotherms in Fig. 7 suggest that over most of the flow field the temperature

is basically equal to the initial temperature. The liquid initial temperature was about 0.5 °C below the

side wall temperature.

The development of temperature field with time is shown in Fig. 9 based on the numerical

analysis. One can see that heat is transferred from the heater by convection first along the free surface

and then into the interior region. The steady state profile in Fig. 9 is computed based on the thermal

boundary conditions at t = 60 min., which shows that the temperature field at t = 60 min. (Fig. 9c) is not

yet steady. One reason why it did not become steady by t = 60 min. (we had estimated the transient

period to be about 60 min.) was because the heater temperature kept increasing as seen in Fig. 6. Fig. 9

also shows the presence of a thin thermal boundary layer along the heater. In the CT tests thermistors

No. 1 - No. 3 (Fig. 4) measured the fluid temperature. The outputs from those probes are compared with

the numerically predicted values in Fig. 10 and good agreement is shown. For some reason the No. 3

probe output seemed to be too high because, although it was placed below the No. 2 probe (Fig. 4), its

reading was always above that of No. 2, which does not seem to be correct (see the isotherms in Fig. 9).

In any case the difference between the No. 3 probe reading and the numerical prediction is at most 0.4

°C, which is only 3% of AT. As shown in Fig. 10b, relative to the overall temperature variation in the

liquid agreement between the analysis and data can be said to be excellent (for clarity only Nos. 1 and 2

readings are shown in Fig. 10b). As mentioned above, the fluid temperature was still increasing after the

one-hour period.

The infrared imager did not require in situ calibration but for a reason not yet fully understood its

readings seemed to have shifted judging from a comparison of its measurement of the fluid initial

temperature with that measured by the thermistors. It was calibrated before and after the flight but no

drifting was found. For that reason instead of determining the absolute temperature of the free surface

we computed the surface temperature increase above the initial temperature. Fig. 11 shows the relative

surface temperature distributions at t = 10 and 60 min. The data and numerical prediction agree very

well. As seen in Fig. 11 the surface temperature drops sharply near the heater and, as a result, the

surface velocity increases very sharply and attains its peak near the heater as Fig. 5a shows. By
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cornpadng the profiles at t = 10 and 60 min., one sees that the overall profile does not change much with

time, only it shifts as the fluid warms up, which explains why the velocity field does not change much

with time, the driving force being dependent on the slope of the profile.

The total heat transfer at the heater is calculated to be 1.18 W while the total power input to the

heater was measured to be 1.2 W, so about 2% of the input is lost by conduction through the base of the

heater. Of 1.18 W of the net heat input to the fluid 14% is lost by radiation from the free surface

according to the numerical analysis. The ratio of the net heat Input to the total heat out from the fluid

(radiation loss plus conduction at the cold wall) is computed to be 1.19 at t= 60 min., showing again that

the temperature field was not in equilibrium at that time.

The velocity vectors determined from the particle motions at t = 10 min. are presented in Fig. 12.

The velocity is relatively large in the region near the top half of the heater. Although there is a very

strong flow along the free surface close to the heater (see Fig. 5a), the present flow visualization did not

detect it because the tracer particles did not go into that small comer region.

The measured velocity distributions are compared with the computed ones in Fig. 13. The axial

velocity distribution at Z/H = 0.89 (Fig. 13a) and the radial velocity distribution at r/R = 0.23 (Fig. 13b)

are shown. Those locations cover the region of large velocity in Fig. 12. At present the velocity field

analysis is not yet complete and the data presented herein are still preliminary. Fig. 13 shows two sets of

data, one from the right cross-section in Fig. 12 and the other from the left. In Fig. 13a the data and the

prediction differ as much as 40% but the predicted general trend agrees with the data. We have to

analyze much more data before we can make a definite statement about the comparison. The

agreement in Fig. 13b is better except near the free surface where, as discussed above, the

measurement did not show a large velocity region close to the surface.

B. CF One-hour Test

The thermal conditions for the CF test are shown in Fig. 14. The laser beam power remained

constant at 0.48 W throughout. The beam diameter was 1.0 cm. However, the side wall temperature

kept increasing and changed by 1.5 °C (15% of AT) after one hour. Since in the above CT test the side

wall temperature did not change that much despite the fact that the heat input to the fluid was greater,

the side wall temperature increase in the CF test was not because of the heat input from the laser beam.

Considering the fact that the air temperature above the fluid also increased by the same rate as Fig. 14

shows, the increase is considered to be due to the ambient temperature increase due probably to an

increase in thermal loading of the Shuttle avionics air system. In all other tests the side wall temperature

remained at about 25 °C. The solid lines in Fig. 14 are the inputs to the numerical analysis. The air

temperature is assumed to represent the surrounding wall temperature in the calculation of the radiation
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loss from the free surface.

Fig. 15 shows the computed and measured streamlines at t = 2 rn_. They agree well. The flow

structure is unicellular as in the CT configuration.

The computed isotherm patterns at various times are presented in Fig. 16. The steady state

pattern is based on the thermal conditions at t = 60 min. The initial liquid temperature was about 0.6 °C

below the side wall temperature. At t = 10 min., heat was spread only along the free surface and most of

the fluid temperature remained unheated. Even at t = 30 min., a large portion of the fluid had a

temperature below the side wall but convection was beginning to heat up the interior. At t = 60 min.,

most of the fluid had a temperature just above the side walt temperature but the temperature distribution

was not yet close to the steady profde. The main reason why the fluid temperature remained low

compared to the side wall for that long time was the continuous increase o_ the latter temperature as

discussed above. Also compared to the CT case the total heatieg area was smaller in the CF test, so the

bulk temperature remained relatively low in the latter case.

Fig. 17a shows the computed maximum fluid temperature and _ between the Nos. 1

and 2 thermistor readings and the numerical prediction. The maximum temperature kept increasing

partly because of the side wall temperature increase and partly because the temperature field was not in

equilibrium. The figure shows good agreement between the data and the prediction. In Fig. 17b the

temperature scale is expanded to show three thermistor readings. As discussed in the CT case, the

reading of No. 3 thermistor seemed to be slightly too high (nearly close to the reading of the probe at the

free surface) but the difference between the data and the prediction is about 0.4 °C which is only 4.5% of

AT. In the CF test the three thermistors along the container centedine gave additional data and their

readings are given in Fig. 17c along with the numerical prediction. Their readings are all close and the

predicted temperature variations follow the data closely. According to the isotherms in Fig. 16 the

thermal boundary layer thickness along the free surface is less than 1.5 mm near the center, so the No. 5

thermistor, which was located at 2 mm from the surface, was just outside the boundary layer.

The infrared imager data are compared with the predicted relative surface temperature

distributions at t = 10 and 60 rain. in Fig. 18. They agree well but near the heated region the imager data

was lower than the prediction because of the presence of a very thin thermal boundary layer there.

Because of the thin boundary layer practically there is no accurate way to measure the surface

temperature near the middle. The data at r/R = 0.5 agrees with the No. 1 thermistor data.

As for the overall thermal balance based on the numerical analysis, 14% of the total heat input to

the fluid is lost by radiation from the free surface at t = 60 min. The ratio of the total heat input to the

total heat out from the fluid is 3.4 at t = 60 min. so that the temperature field is still very far away from

equilibrium even after one hour. The overall AT is 10 °C when a steady state is reached as seen in Fig.
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5b but AT at t = 60 min., is still about 9 °C according to Fig. 17a.

The velocity vectors at t = 10 min., are given in Fig. 19 and Fig. 20 shows the measured and

computed velocity distributions at selected locations. The agreement between them is better than that in

the CT configuration (Fig. 13) and in this particular instance a few particles gave large velocities near the

surface.

By comparing the results of the CT and CF tests presented above one can say that although the

flow structures are similar (simple unicellular structure), the temperature fields are different: In the CT

case the overall fluid temperature is higher and there exists a very noticeable thermal boundary layer all

along the heater surface while in the CF case a thermal boundary layer exists along the free surface

mainly in the heated region. In both cases the free surface temperature drops sharply in a relatively

small region near the center (the so-called hot-comer region) and the flow is driven mainly in the

hot-comer region. Although no oscillations were found in the present experiment, our ground-based tests

have shown that the oscillation phenomenon is very much influenced by the heating mode.

C. Curved Free Surface Tests

The analysis of the data from the curved free surface tests has just begun, so not much data can

be presented herein. An example of streamline pattern with a curved free surface is presented in Fig. 21

and it is compared with the numerical result. The predicted flow pattern agrees well with the data. The

flow structure is still unicellular. One major objective herein is to study how the free surface shape

affects the flow structure. One aspect studied so far is given in Fig. 22, where the location of the cell

center is shown for various surface shapes. The predicted locations are in general agreement with the

measured ones. When the free surface is fiat or convex, the cell center is located around mid-radius.

When the surface is concavely curved, the flow along the free surface turns around sooner because the

flow passage toward the top cold wall region narrows and consequently the cell center moves toward the

centerline. However, when the surface is highly concave, the fluid height near the center becomes small

and consequently the fluid speed decreases rapidly when the fluid moves away from the center because

of increasing flow area. Therefore, the main motion is seen only near the center, which produces one

cell. The fluid speed is quite small away from the center but since the fluid volume involved in the weak

motion is very large, a second cell is produced in the region (Fig. 22). The fluid rotation direction is the

same in both cells. A more detailed flow analysis is in progress.

CONCLUDING REMARKS

Some of the velocity and temperature data taken in the STDCE experiment conducted aboard

the USML-1 Spacelab in 1992 are presented. The results for one-hour CT (Constant Temperature) test
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and also for one-hour CF (Constant Flux) test and some preliminary results for curved surface tests are

given and compared with the results of the numerical analysis conducted in conjunction with the

experiment. The tests covered a range of Ma up to 3.1x105 . Aside from some problems discussed

above, the hardware performed well generally and a large amount of valuable data were collected.

Much of the data are still being analyzed. The temperature data shown in the present paper agree well

with the numerical predictions. A validation of a numerical analysis for thermocapillary flow in such a

high Marangoni range has not been done in the past. A total of 20 CF and 18 CT tests were conducted

with fiat and curved free surfaces under varieties of conditions. No oscillations or instabilities were

observed in any of the tests. G-jitter caused by thruster firings induced small but visible free surface

disturbances but did not change the flow field appreciably.
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(a) CF configuration
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(b) CT configuration

Figure 3 Free surface shapes
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Figure 4 Location and numbering of thermistors
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Discussion

Question: Could you make a comment as to what'you think is wrong in terms of the prediction for

oscillatory onset that does not seem to happen. Where do you think the problem is ?

Answer: Well, the problem is in the physics. You know there was just always this assumption that was

an instability. Usually if you think of an instability you can see a physical mechanism for an instability,

that you have a heavy fluid overlaying a lighter one. When the thing (oscillatory behavior in surface

tension flows) was called an instability, I did not see that physics. We went along with it and it became

apparent to us that we could not correlate the onset conditions with a single parameter. The only other, if

you believe in similitude theory which I do, I am a strong advocate of it, you say there is another

parameter missing. Well what is the other parameter ? From the boundary conditions and the normal

stresses there is a capillary number. Now everybody was taught to evaluate the capillary number. The

capillary number, if you evaluate it, is very small. So you say that surface deformation cannot be

important. We had a heated discussion about this here in Huntsville in the early days before any

experiments were done. There had been some numerical studies where people had assumed a linear

temperature profile along the free surface and I as an applied mathematician said, the surface

temperature distribution has to be part of the solution. We got into this argument, and also considered

the shape, and people said that since the capillary numbers are very small, it was not important. But

when we could not correlate the data, we knew we needed another parameter, and asked the question

what can that be ? The answer is the capillary number, which immediately said surface deformation must

be important and so we said that. As we continue to do experimental and numerical work we feel, and

we have described this, that the oscillations are due to a three way coupling, part of the inherent

dynamics of the situation. In other words, you impose a temperature gradient on the free surface, when

the Marangoni number gets effectively high so the convection is important, that is why you have got to

exceed the Marangoni number like 104. What happens is that profile begins to change and the imposed

signature changes. For high Prandtl number fluids it actually becomes S-shaped so that all the driving

ends up in the end. Now this fluid moves to the end, hits the end wall and because the surface can

deform, even if it deforms a little bit, there is a time lag. So the return flow that comes back and starts to

cool has that time lag in it. You say this S parameter, which is a modified capillary number, is kind of

small but that S parameter is a measure of the deformation of the free surface to the radius. Well that is

a very small number but the fact is that the thermal boundary layer thicknesses here are 100 microns.

So these deformations are on that order. So what is happening is that the driving force is being

modulated through this time lag. And now everybody in the world sees these deformations of the free

surface. Our feeling is that it is not an instability. All the instability theories have to date left off the end
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effects, they have dealt with doubly infinite regimes and they claim quantitative agreement. They will

agree with a wave number but be off 3 orders of magnitude on the frequency. The wave forms are wrong

and so this has been some sort of a controversy that has been going on. At the same time I hear people

saying we understand the physics of Marangoni convection. Maybe the physics of Marangoni flow they

understand but thermocapillary flows, the physics, has been a problem. And I think we have gone a long

way to delineate it. And I think unequivocally, our measurements have shown the importance of the

ends in driving this whole mechanism.

Question: Was it the stream

calculations?

Answer: Yes.

function maximum that you compared from the experiment to the

Question: In your numefical code how did you input the shape of the surface ? Was that calculated or

was that a constant? And did you get that from the experiment ?

Answer: Knowing the contact angle the shape is determined and input to the code.

Question: What are your reasons for the marginal at best, comparisons ? I did not understand why

your numerical prediction of the circulation center point did not agree with the experiment ?

Answer: Because these rotating cells, these sub-region flows which occur in buoyancy driven flows as

well, have velocities that are sometimes orders of magnitude off the mean velocity. So if your computer

doesn't know where these cells are and what high resolution to use, they miss it just like experimentally

you would miss it if you didn't have the right resolution. That has been the problem in trying to do

confined flows by buoyancy driven or by surface tension driven force where the driving is being done on

the surface. What happens in the intedor can be all kind of crazy things like what I call flow sub-regions.

If you don't have the proper resolution numerically or experimentally you are going to miss those and that

is the problem.

Question: That means it is not a converged solution. It has to be grid independent. Is that correct ?

Answer: True. That is an inherent difficulty. People think all you have to do is compute everything.

When I have people computing 3 dimensional, unsteady, turbulent everything I give them a little problem

of a box, heat one wall and then cool one wall. Ill show you what the data looks like. I never hear from

those guys again. So it is not that easy_
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